
 10 MOC: Python Modules TI_DRAW: ANIMATION

 TI-84 PLUS CE PYTHON

©2022 Texas Instruments Incorporated 1 education.ti.com

Ti_draw Animation

After completing the ‘Getting Started…’ activity let’s make an object move on the screen. Animation is big

business and computers have changed the landscape.

0. This project produces a ‘bouncing ball’ animation on the graphics

‘canvas’.

1. Begin with this short program that causes a point to move across the

screen.

The point starts at the middle of the left edge of the screen: (0, 106).

plot_xy(, ,) is found in the ti_draw… module and simply plots the

point (x, y).

In plot_xy(x, y, 1) the 1 represents the point style which can be a

value from 1 to 13. Try the other styles.

The if statement at the end causes the point to ‘wrap around’ on the

screen. Your first modification will cause the point to move back and

forth between the sides of the screen.

2. Introduce another variable, dx = 10, and use it to make the point

move to the right in place of the constant 10 used in the previous

step.

 10 MOC: Python Modules TI_DRAW: ANIMATION

 TI-84 PLUS CE PYTHON

©2022 Texas Instruments Incorporated 2 education.ti.com

3. Change the if statement to reverse direction by changing the value of

dx.

 if x > 318 : dx = -dx

Add another bit of code to cause the point to change direction at the

left side of the screen, too. Try it yourself first.

4. Did you add an or… clause to the condition?

 if x > 318 or x<0: dx = -dx

Test the program now to see that the point moves right and left on the

screen until you press [clear].

5. Modify the program to introduce vertical motion as well, but this time

instead of moving at a fixed rate, make the point accelerate like a

falling object: seemingly under the effect of gravity!

Introduce two new variables: dy = 0 for the change in the y-position

 and g = 2 to represent ‘gravity’.

The value of g is arbitrary and can be edited later to see the effect.

6. When x changes value by adding dx, so do y and dy:

 dy increases by the amount g and

 y increases by the amount dy.

Note: (x, y) is position. dx and dy represent velocity (changes in

position). g represents acceleration (change in velocity).

 10 MOC: Python Modules TI_DRAW: ANIMATION

 TI-84 PLUS CE PYTHON

©2022 Texas Instruments Incorporated 3 education.ti.com

7. When the point reaches the bottom of the screen (200 is close to the

bottom), make the point ‘bounce’ upward using dy = -dy + g (change

direction). The extra +g here is to decrease the energy in the

bouncing ball. Without it the ball will return to its original height and

that is unrealistic.

We also make the point slow down (lose energy) horizontally:

 dx *= 0.9.

Eventually the point will stop moving.

8. Change the starting position of the point from (0, 106) to (0,10) to give

the point more vertical room to fall.

<Run> the program and experiment with the numbers used in the

code to see the effect of each variable.

Change the plot_xy(x, y, style) and color (use set_color(, ,)) of the

point.

9. Move the clear() function before the while not escape() statement

so that each position of the point remains on the screen, thus

showing the complete path of the point. This is point style 3. What

patterns do you see in this path?

Challenge: connect the dots!

