
 10 MOC: Python Modules GETTING STARTED WITH TI_PLOTLIB: COIN TOSS

 TI-84 PLUS CE PYTHON

©2022 Texas Instruments Incorporated 1 education.ti.com

Getting Started with ti_plotLib Coin Toss

This activity introduces the ti_plotLib module that is used for plotting points and graphing data sets (scatter plots).

0. Included in the TI-84 Plus CE Python system, the ti_plotLib module

contains statements and functions used for plotting data sets (pairs of

lists), individual points, lines, and drawing text on a graph screen. This

activity introduces the module through a coin-tossing (percent heads)

simulation.

1. The ti_plotlib Setup menu contains functions that prepare the graph

screen:

cls() – clear the screen

grid() – set the grid scale values – style chosen from a sub-menu

window(), auto-window() – set the viewing window

axes() – style of axes (or off) mode chosen from a sub-menu

labels() – label the axes

title() – place a title at the top of the graph

show_plot() – pause while showing the plot. Press [clear] to exit

2. The ti_plotLib Draw menu (many have sub-menus):

color() – set the plot color

scatter() – a scatterplot of the lists with connecting segments

plot() – a scatterplot of either two lists (dots only) or plot a point

line() – draw a line between two points

lin_reg() – show a least squares regression line for the two lists

pen() – set the pen size and style for lines

text_at() – draw “text” at row number

 10 MOC: Python Modules GETTING STARTED WITH TI_PLOTLIB: COIN TOSS

 TI-84 PLUS CE PYTHON

©2022 Texas Instruments Incorporated 2 education.ti.com

3. Coin Tossing: When tossing a fair coin, approximately half of the tosses

will be heads. If you toss the coin just a few times the likelihood that

there will be an equal number of heads and tails is small. But, as the

number of tosses grows, this ratio improves towards our expectation.

This activity creates an interactive simulation of coin tosses and displays

a growing scatter plot of the percentage of the outcomes that are heads.

4. Begin a new Python program (we called it ‘PLTA’) and select the <Type>

Plotting (x,y) & Text template from the dropdown list when naming the

program. This template provides the unique import statement:

 import ti_plotlib as plt

along with an incomplete ‘demo’ program. The lists x and y do not

contain any data. But all the plt. functons you will need are already in the

code!

This type of import statement requires that all ti_plotlib functions be

preceded by the alternate name plt. In Python-ese this is called ‘aliasing’

the module (give it a different, usually shorter name). When selecting

ti_plotlib functions from the menus they will include this name at the

beginning of the function as seen in the statements shown here.

Note: the Setup statements, if used, should be listed in this order since

each one paints the canvas (screen) over the previous one: clear the

screen, set the window, draw the grid, then draw the axes.

5. The main program consists of a loop that ends when [clear] is pressed.

Usually this is done with the statement: while not escape():

but this program needs to also pause until a key is pressed to toss more

coins when you are ready. Near the top of the program, below the two

list assignments, assign the variable k the result of wait_key():

 k = wait_key()

and write the while loop that ends when k equals 9 by writing:

 while k != 9:

because the wait_key() function returns the value 9 when the [clear]

key is pressed.

Indent all the plt. statements except the last one to become part of the

loop body.

Add from random import * at the top of your program since we’ll be

 10 MOC: Python Modules GETTING STARTED WITH TI_PLOTLIB: COIN TOSS

 TI-84 PLUS CE PYTHON

©2022 Texas Instruments Incorporated 3 education.ti.com

‘tossing a coin’ using the randint() function. (not shown)

6. The plot will show the toss number along the x-axis and the percentage

of heads tossed (as a decimal) on the y-axis. The percentage will be a

number between 0 and 1.

Initialize two counting variables:

 t = h = 0

before the while loop.

 t counts the number of tosses

 h counts the number of heads

7. In the while loop body, turn your attention to coin tossing and recording

data. At each keypress, toss the coin 10 times using a for loop:

 for i in range(10):

 t += 1 # count the toss

 x += [t] # append the count to the list x

 h += randint(0,1) # toss coin and add 1 if head

 y += [h / t] # append the ratio to the list y

Note: x += [t] (shorthand for x = x + [t]) is the same as x.append(t).

Find the square brackets on [2
nd

] [stat] or on <a A #>

 10 MOC: Python Modules GETTING STARTED WITH TI_PLOTLIB: COIN TOSS

 TI-84 PLUS CE PYTHON

©2022 Texas Instruments Incorporated 4 education.ti.com

8. It’s time to address the plot functions:

 #comment the functions .auto_window(), .labels(), and .grid().

 press [2
nd

] [3] for the #comment symbol (#)

 Add a custom window setting:

 plt.window(0, t, 0, 1)

 that changes the window to suit the number of tosses t

 Find plt.window(, , ,) on [math] ti_plotlib… Setup

Note that all the plt. functions are still part of the while loop (indented_

except for the last one, plt.show_plot(), which simply pauses the

program until the [clear] key is pressed.

The last statement in the while loop is the wait_key() function to pause

and wait for another keypress:

 k = wait_key()

9. <Run> the program and press a key. You will see the first 10 dots on the

graph. Each represents the percentage of the number of heads after

each toss. The x-axis ranges from 0 to 10 and the y-axis ranges from 0

to 1.

10. Press a key several more times. The while loop adds 10 tosses for each

keypress and updates the plot to show more tosses. The number in the

lower right corner (150 in this image) is the total number of tosses thus

far.

Notice the pattern in the plot: The dots added on the right get closer to

the vertical center of the screen which represents the value y=0.5. This

is what you expect from tossing a coin a large number of times: the

number of heads is approximately 50% (0.5 or ½) of the tosses.

To end the program, press the [clear] key twice: once to end the while

loop and once to end the plt.show_plot() function at the bottom of the

program.

 10 MOC: Python Modules GETTING STARTED WITH TI_PLOTLIB: COIN TOSS

 TI-84 PLUS CE PYTHON

©2022 Texas Instruments Incorporated 5 education.ti.com

11. If you continue to press a key to toss more coins, eventually you will

encounter the MemoryError indicated here. The Python App runs out of

memory because the lists get too large.

Challenge:

You can overcome the memory limit either by:

a) Plot fewer data points (say, every 10 tosses instead of every one).

You will still run out of memory but at a larger (10x) total.

b) Only plot the last 100 data points. You won’t run out of memory. But

you will have to adjust the viewing window so that the plot still fills

the screen.

 10 MOC: Python Modules GETTING STARTED WITH TI_PLOTLIB: COIN TOSS

 TI-84 PLUS CE PYTHON

©2022 Texas Instruments Incorporated 6 education.ti.com

Teacher Tip: Sample code

Plotting (x,y) & Text

import ti_plotlib as plt

from ti_system import *

from random import *

x=[];y=[]

t=h=0

k=wait_key()

while k!=9:

 for i in range(10):

 t+=1

 x+=[t]

 h+=randint(0,1)

 y+=[h/t]

 plt.cls()

 #plt.auto_window(x,y)

 plt.window(0,t,0,1)

 #plt.labels("X","Y",12,2)

 #plt.grid(1,1,"dot")

 plt.axes("on")

 plt.color(0,0,255)

 plt.scatter(x,y,"o")

 k=wait_key()

 plt.show_plot()

