 [image: TI Logo] 10 MOC: Python Modules 	 	TI PLOTLIB: GRAPHING FUNCTIONS
 TI-84 PLUS CE PYTHON		
	TI PlotLib
	Graphing Functions

	The TI PlotLib module is also well-suited for graphing smooth, continuous functions: plotting points one-by-one requires extra work to ‘connect the dots’ but using lists works as we did in the previous activity, Sequences, can work very well with the right setup functions.

	1. Begin a Python program using the ‘Plotting (x,y) & Text’ template from the ‘Type:’ dropdown list. Our program is called PLTC.
	
[image:]

	2. This template provides the import statement:
 import ti_plotlib as plt
along with an incomplete demo program. The lists x and y do not contain any data.

Since most of the code is already designed for plotting these lists, let’s give it some data to plot.

	
[image:]

	3. Change the names of the two list variables to xs and ys. Make room below these assignment statements for more code.
	
[image:]

	4. Use four ‘window variables’ to establish a viewing window. We will use these values in plt.window() rather than rely on the plt.auto_window provided.

 x0, x1, y0, y1 = -10, 10, -7, 7
These values are close to a standard viewing window in the Graphs app. The origin is near the center of the screen.

Having the four window variables assigned on a single line makes them easier to locate and edit and saves vertical space in your program.
	
[image:]

	5. It is useful have the Width and Height of the screen in pixels stored in two Uppercase variables:
 W, H = 318, 212
 (For a capital letter press [alpha] twice, then the letter)

	
[image:]

	6. We will plot determine a value of the function for every pixel on the screen, but we need to know the ‘distance’ between pixels based on our chosen window settings:
 d = (x1 – x0) / W
d is the ‘change in x’ as we move from one pixel to the next in our chosen viewing window.
	
[image:]

	7. We’re ready to generate the coordinate values using a loop. A for loop is tempting, but the Python for loop can only process integer values, not decimals.
Use a while loop instead. Start at x0 and have the loop end when x reaches x1 by adding d to x in each step of the loop:
 x = x0
 while x <= x1:
 # some code goes here
 x += d
	
[image:]

	8. In the loop body, evaluate your function and add the point coordinates to the lists x and y.
We’ve chosen to plot the function
 y = x**2 - 5
 (You can also define a function and use it here!)
 xs.append(x)
 ys.append(y)

	
[image:]

	9. We’re done with the while loop that creates the lists. Turn your attention to the plot functions below the loop. The most important change is the names of the two lists: xs and ys . These are used in both the auto_window(x, y) and the scatter(x, y) functions.

But… we will replace auto_window() with plt.window() and make use of our custom window settings.
	
[image:]

	10. Make the changes highlighted here:
#comment plt.auto_window() statement ([2nd] [3] produces #)
Add plt.window(, , ,) selected from [math] ti_plotlib… Setup and use your window variables x0, x1, y0, y1.
Change plt.scatter() to plt.plot(xs, ys, “.”) selected from
 [math] ti_plotlib… Draw. Note that the “mark” is the small dot.

	
[image:]

	11. <Run> your program after maing the changes. If your graph does not appear and you see just the Shell prompt then there is an error. But it’s probably not your fault! At the Shell prompt press [2nd] [uparrow] several times to get the error message to appear…
	
[image:]

	12. We got the MemoryError shown here. There’s not enough memory for all the elements we are generating in the two lists (318*2).

To fix the error we need to generate fewer elements in the lists.

Return to the <Editor> …
	
[image:]

	13. In the statement where d is calculated, change the calculation:
 d = 2 * (x1 - x0) / W
This forces the program to calculate a point at every other pixel thus creating half as many data points in the plot.

After making the change… <Run> the program again
	
[image:]

	14. <Run> the program again and you should see the graph shown here.

Challenge 1: plot two functions at the same time in different colors. Be careful about memory usage.

	
[image:]

	15. Challenge 2:
[bookmark: _GoBack]Plot two functions in different colors. Be careful about memory usage – you only need one x-list for both functions and change the value of d to generate fewer points if you get the MemoryError.
	
[image:]
[image:]

	Teacher Tip:
Sample solution to the Challenge; additions in bold:

import ti_plotlib as plt
from math import *
xs=[]; ys=[]; a=[] # a is a second y-list
x0,x1,y0,y1=-10,10,-7,7
W,H=318,212
d=3*(x1-x0)/W
x=x0
while x<=x1:
 y=x**3-2*x # first function
 xs.append(x)
 ys.append(y)
 y=2*cos(x) # second function
 a.append(y)
 x+=d
plt.cls()
#plt.auto_window(x,y)
plt.window(x0,x1,y0,y1)
plt.labels("X","Y",12,2)
plt.grid(1,1,"dot")
plt.axes("on")
plt.color(0,0,255) # blue
plt.plot(xs,ys,".") # first plot
plt.color(255,0,255) # magenta
plt.pen("medium","solid") # change pen thickness
plt.plot(xs,a,".") # second plot
plt.show_plot()

©2022 Texas Instruments Incorporated	3	education.ti.com
image2.png

image3.png

image4.png

image5.png

image6.png

image7.png

image8.png

image9.png

image10.png

image11.png

image12.png

image13.png

image14.png

image15.png

image16.png

image17.png

image18.jpeg

