[image: TI Logo] 10 Minutes of Code: Python	UNIT 5: SKILL BUILDER 2
 TI-84 PLUS CE PYTHON		STUDENT ACTIVITY
	Unit 5: The TI Modules
	Skill Builder 2: Data Sharing

	In this lesson, you will transfer data between the Python environment and the TI-84 Plus CE Python graphing calculator environment.

	Objectives:

	
	· Work with store_list(), recall_list()
· Export a list to the calculator for further analysis.

	The Python App is a separate system included in the TI-84 Plus CE Python graphing calculator. The most obvious change is the inclusion of lowercase characters.
But these are two separate “worlds.” The calculator world knows nothing about the data in a Python program, and the Python world knows nothing about the variables in the calculator.
It’s as if Python is a separate entity in the calculator. But there are special TI-developed functions in Python that let you transfer data between the two worlds (like teleporting).

	
[image:]

	1.
In the last lesson, you wrote a program to generate data from dice tossing. We can use that program now to demonstrate the transfer of data from the Python world to the calculator world.

Recall the original DICE program you wrote in Unit 4, Application. The name is DICE, and the complete code is shown in this image.

	
[image:]

	2. Make a copy of this program in the <Fns…> Files FILE MANAGER.
Select the “DICE” file, and select <Manage> Replicate Program.
Ours is now named DICEC.

	[image:]

	3. In your new duplicated program, you will use a function that is part of the ti_system module, so at the top of your program add the statement:
 from ti_system import *
	
[image:]

	4.
At the end of the program, when the totals list is complete, add this new function that sends the contents of the list to the calculator’s RAM:
 store_list(“ ”,)
found on <Fns…> Modul> ti_system.

See the next step for completing the statement.

	
[image:]

	5. The store_list(“ “ ,) function requires two arguments. Both of them are the names of lists:
· Inside the quotes (the first argument) type the name of a TI-84 Plus CE Python list*
· After the comma, type the name of the Python list in this program to be transferred; in this case: totals

*Note: The TI-84 Plus CE Python list name must conform to the TI-84 Plus CE naming conventions for lists:
· All UPPERCASE
· Five characters or less
· Must begin with a letter
· [bookmark: _GoBack]Can be one of the six built-in lists (L1…L6). Use a number from “1” to “6” in the quotes.
So, to meet these constraints, our TI-84 Plus CE Python list is called TOTLS.
	
[image:]

	6. Run the program. If you see something unusual then there is probably something wrong in your code. Nothing new should happen on the screen, but …
	[image:]

	7. Quit Python (press [2nd] [mode]) and answer <Ok> or press [enter]).

	[image:]

	8. From a blank line on the home screen, press [list] ([2nd] [stat]) to see the names of lists in your device. Below the built-in lists L1 … L6, you see your named lists and TOTLS is among them (in alphabetical order). Your list names will likely look different than what is shown here. Select this list and, on the home screen, press [enter] to see its contents.

Now that you have the data in your TI-84 Plus CE Python graphing calculator world you can perform graphical and statistical analysis on it using the calculator tools with which you are already familiar.

We will demonstrate a graphical example next.
	[image:]

	9. To make a scatter plot of this data you also need a list of sums.
Press [stat] Edit and enter the numbers 2 …12 into one of the lists. We use L1.

	
[image:]

	10. Set up a [statplot] found above [2nd] [y=] of TOTLS versus L1 as shown.
Turn Plot1 On. The Type: will be scatter plot, the first icon.
To get the list name L1 as the Xlist press [2nd] [1].
To get the list name TOTLS as the Ylist press [list], scroll down to the name and press [enter].

Verify that your settings match the screen here. Then …

	[image:]

	11.

Press [zoom] ZoomStat to see the scatter plot. Yours should be similar to this but not exactly the same.

So, with little effort you can program a simulation using Python, transfer the data to your TI-84 Plus CE Python, and perform all the graphical and statistical analysis in your calculator using the tools you already know about.
	
[image:]

©2021 Texas Instruments Incorporated	2	education.ti.com
image1.png
1:TI-Basic
FPsthon Arp

image2.png
R N
from random import X

0]¥11
nt(input("h of trials?"))

i in range(trials):
=randint(1,6)
andint(1,6)

ielvd

totals[sun-2]-totals[sun-2]+1
print(totals)

Fre. Ta A #[Tools] Run [Files

image3.png
don import ¥
system inport ¥

totals=[0]x11
trials=int(input("# oftrials?"))

for i in range(trials):
andint(1,6)
andint(1,6)

sun-diel+die?

=totals[sun-2]+1
Fre. Ta A #]Tools] Run [Files

image4.png
R N
for i in range(trials):
diel=randint(1,6)
andint(1,6)
ielrdie?

otals[sun-2]+1

Fre. Ta A #Tools] Run [Files

image5.png
R N
die2-randint(1,6)
sun-diel+die?
totals[sun-2]=totals[sun-2]+1

print (totals)

store_list('TOTLS", totals)

Fre. Ta A #Tools] Run [Files

image6.png
>>> t Shell Reinitialized
55> # Running DICEC

53> from DICEC import x

| of trials?1000

[27, 62, 91, 131, 146, 152, 133,
106, 67, 55, 30]

>>> |

Fre. Ta A #]Tools Editor Files

image7.png
Are you sure?
Select

- [0k to quit.
- [Esc] to return.

Too

[

image8.png
GRES OPS MATH
61Ls

image9.png
Liw=2

image10.png
Plotz Plota

OFf

Tupe: B LA o e I 12
Xlist:Ly
Y1ist:TOTLSH

Mark B + -

Color: BRI

image11.png

image12.jpeg

